To resolve the pandas NotImplementedError with the message "the method `pd.series.__iter__()` is not implemented," you can use the 'to_numpy()' method instead of iterating directly over the Pandas Series.
Here's how you can do it:
import pandas as pd
# Create a Pandas Series
s = pd.Series([1, 2, 3, 4, 5])
# Instead of iterating directly over the Series like this:
# for value in s:
# print(value)
# Use the 'to_numpy()' method to convert the Series to a NumPy array:
arr = s.to_numpy()
# Now you can iterate over the NumPy array if needed:
for value in arr:
print(value)
A detailed explanation of the function is written line by line.
def my_func(df):
# be sure to create a column with unique identifiers
df = df.reset_index(drop=True).reset_index()
# create dataframe to be removed
# the additional dummy column is needed to correctly filter out rows later on
to_remove_df = df.drop_duplicates(['team_code', 'TeamName'])[['index']]
to_remove_df = to_remove_df.assign(check = lambda x: 'remove_me')
# merge the two dataframes and remove rows
merged_df = df.merge(to_remove_df, on='index', how='outer')
result = merged_df.loc[merged_df['check'].isna()]
# drop unnecessary columns
result = result.drop(columns=['index', 'check'])
return result
Example 1
# your data
data = {'team_code':['A1', 'S1'],
'TeamName':['JohnTeam', 'SusanTeam']}
input_df = ks.DataFrame(data)
df = my_func(input_df)
print(df)
# Empty DataFrame
# Columns: [team_code, TeamName]
# Index: []
Example 2
# other sample data
data = {'team_code':['A1', 'S1', 'A1', 'S1'],
'TeamName':['JohnTeam', 'SusanTeam', 'RickTeam', 'SusanTeam']}
input_df = ks.DataFrame(data)
df = my_func(input_df)
print(df)
# team_code TeamName
# 3 S1 SusanTeam
Importing the necessary library and creating sample data:
import pyspark.pandas as ps
data = {"col_1": [1,2,3], "col_2": [4,5,6]}
df = ps.DataFrame(data)
Calculating the median for each row and adding it as a new column:
median_series = df[["col_1","col_2"]].apply(lambda x: x.median(), axis=1)
median_series.name = "median"
df = ps.merge(df, median_series, left_index=True, right_index=True, how='left')