To resolve the error "`y` argument is not supported when using `keras.utils.Sequence` as input," you need to modify your code to ensure that the `y` argument is not passed when using a `keras.utils.Sequence` object.
Here's how you can do it:
If you are using the `fit_generator()` method to train your Keras model with a custom data generator that inherits from `keras.utils.Sequence`, make sure that you are not passing the `y` argument when calling the `fit_generator()` method.
Here's an example of how to use `fit_generator()` correctly:
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import Sequence
# Define your custom data generator class inheriting from keras.utils.Sequence
class CustomDataGenerator(Sequence):
def __init__(self, x_data, batch_size):
self.x_data = x_data
self.batch_size = batch_size
def __len__(self):
return len(self.x_data) // self.batch_size
def __getitem__(self, index):
batch_x = self.x_data[index * self.batch_size:(index + 1) * self.batch_size]
return batch_x, None # Return None for the 'y' argument
# Create an instance of your custom data generator
data_generator = CustomDataGenerator(x_data, batch_size)
# Define your Keras model
model = Sequential()
model.add(Dense(units=64, activation='relu', input_shape=(input_shape,)))
model.add(Dense(units=1, activation='sigmoid'))
# Compile your model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train your model using the fit_generator() method
model.fit_generator(generator=data_generator, epochs=epochs, steps_per_epoch=len(x_data) // batch_size)
An error occurs when passing the validation data without the keyword argument, causing it to bind to 'y'. This can happen when using the `fit()` method of a machine learning model in TensorFlow or a similar library.
The error arises because the `validation_data` argument expects a tuple `(x_val, y_val)` where `x_val` is the input validation data and `y_val` is the target validation data. However, if you pass only the validation data without specifying the keyword, it assumes that the entire data passed is the target validation data (`y_val`). This leads to a mismatch between the expected input and the actual data, resulting in an error.
To resolve this error, ensure that when passing the validation data, you provide it as a tuple with the keyword argument specifying the input and target validation data separately. For example:
model.fit(
training_set,
validation_data=(validation_input_data, validation_target_data),
epochs=epochs,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps
)
By explicitly providing the input and target validation data as a tuple with the keyword argument, you avoid the error caused by the incorrect binding of the validation data.